

The model

Consider the Vlasov-Poisson advection equation $f_t + v f_x + E(x, t) f_v = 0$

f(x, v, t) =probability density function (x, v) = coordinates in phase-spaceE(x,t) = electric field

Discretization

Mesh: $I_{i,j} := [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}] \times [v_{j-\frac{1}{2}}, v_{j+\frac{1}{2}}]$ Numerical solution $f_{i,j}^{n} \approx f(x_i, v_j, t^{\tilde{n}})$ Need: $E_i^n \approx E(x_i, t^n)$ and $\hat{f}_{i+\frac{1}{2}, j}^n \approx f(x + \frac{\Delta x_i}{2}, v_j, t^n)$ Goal: $\{f_{i,i}^n\} \to \{f_{i,i}^{n+1}\}$

Poisson's Equation: compute E(x,t)

Solve Poisson's equation w/ Fourier Transform \mathcal{F} . $\phi_{xx} = -\rho(x,t) = -\left(\int_V f(x,v,t)dV - 1\right)$ $\mathcal{F}\{-\rho\} = \mathcal{F}\{\phi_{xx}\} = ik\mathcal{F}\{\phi_x\}$ $E = -\phi_x \Rightarrow E(x,t) = \mathcal{F}^{-1}\left\{\frac{-i}{k}\mathcal{F}\{\rho\}\right\}$

(2c) WENO5 2 Approximate/reconstruct cell boundary values [2]. In x, v: $\{f_{i-2}, f_{i-1}, f_i, f_{i+1}, f_{i+2}\} \rightarrow \hat{f}_{i\pm \frac{1}{2}}$ \rightarrow High Order $\mathcal{O}(\Delta x^5)$ \rightarrow Controls oscillations \rightarrow resolves sharp gradients

A Robust, Third-Order Accurate Solver for the 1D1V **Vlasov-Poisson Equation**

Mr. Dylan Jacobs, Dr. Joseph Nakao

Strong	Stahility.	- Prosorving

(1)

(2a)

(2b)

For each Runge-Kutta Stage at time $t^{(k)}$: **Step 1.** Compute E(x,t) via Poisson's equation. **Step 2.** Compute flux differences $F_x^{(k-1)}$, $F_v^{(k-1)}$ for each cell center $f_{i,j}$ $F_x(x,v,t) = vf, \quad F_v(x,v,t) = E(x,t)f$ **Step 3.** Reconstruct cell fluxes using WENO5. **Step 4.** Compute $f^{(k)}$ via SSP-RK3 scheme.

SSP-RK3 butcher tableau

Runge-Kutta [1]

$$\begin{array}{c|cccc} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1/2 & 1/4 & 1/4 & 0 \\ \hline & 1/6 & 1/6 & 2/3 \end{array}$$

$$(3a)$$
 $+ \frac{\Delta t}{\Delta v} F_v^{(\ell-1)}$

$$^{-1)} + \frac{\Delta t}{\Delta v} F_x^{(\ell-1)}$$
 (3b)

$$\alpha = k = 0.5$$

Numerics: Two-Stream Instability

(IMEX) methods to compute the model

 $f_t + v f_x + E$

C(f, f) requires implicit-explicit (IMEX) scheme Working on extending to collision operators in cylindrical coordinates.

References

[1] Gottlieb, S., Shu, C.-W., & Tadmor, E. (2001). Strong Stability-Preserving High-Order Time Discretization Methods. *SIAM Review*, 43(1), 89–112. [2] Jing-Mei Qiu, Andrew Christlieb, A conservative high order semi-Lagrangian WENO method for the Vlasov equation, Journal of Computational Physics, Volume 229, Issue 4, 2010, Pages 1130-1149, ISSN 0021-9991, [3] Shu, C. (2009). High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems. SIAM Review., 51, 82-126.

Ongoing work: collision operators

Vlasov-Fokker-Planck model: we are currently working on low-rank, high-order implicit-explicit

$(x,t)f_v =$	C(f, f)	(4)
	collision operator	